Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental Neurobiology ; : 178-189, 2014.
Article in English | WPRIM | ID: wpr-39646

ABSTRACT

It has been suggested that the hippocampus and the prefrontal cortex (PFC) play key roles in representing contextual memory and utilizing contextual information for flexible response selection. During response selection, a correct response should be facilitated and an incorrect response should be inhibited flexibly in association with a cueing stimulus. However, it is poorly understood how the hippocampal and PFC networks behave during such flexible control of facilitation and inhibition of behavioral responses. To find neural correlates of context-cued flexible response selection, the current study employed an object-place paired-associate (OPPA) task in which object A is only rewarded in place 1 and object B is associated with reward in place 2 while recording single units simultaneously from the hippocampus and PFC. During the task, response inhibition in front of a contextually wrong object is required for successful performance and such inhibitory responses were observed before the rat learned the task. A significant proportion of neurons that fired differentially depending on the existence of inhibitory behavior in the PFC was observed during the pre-learning stage. By contrast, the proportion of such neurons in the hippocampus was significantly greater than chance during post-learning stage. The results suggest that the development of inhibitory behavior is a critical behavioral marker that foretells an upcoming acquisition of the task and the hippocampus and PFC are involved in learning contextual response selection by learning how to control the inhibition of behavior as learning progresses.


Subject(s)
Animals , Rats , Cues , Electrophysiology , Fires , Hippocampus , Learning , Memory , Neurons , Prefrontal Cortex , Reward
2.
Experimental Neurobiology ; : 15-22, 2010.
Article in English | WPRIM | ID: wpr-27768

ABSTRACT

Amnesic patients who have damage in the hippocampus and in associated areas in the medial temporal lobe suffer from remembering specific events that may or may not share similar objects and locations. Computational models, behavioral studies, and physiological findings all suggest that neural circuits in the hippocampus are suitable for representing seemingly similar events as distinctively different individual event memories. This article offers a selective review on this particular function of the hippocampus and its associates areas such as the perirhinal cortex, mostly centering upon lesion studies and physiological studies using animals. We also present recent experimental results showing that the dentate gyrus subfield of the hippocampus and perirhinal cortex are particularly important for discriminating similar paired associates between same objects and different locations, or vice versa.


Subject(s)
Animals , Humans , Brain , Dentate Gyrus , Hippocampus , Temporal Lobe
SELECTION OF CITATIONS
SEARCH DETAIL